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We study the synchronization of identical oscillators diffusively coupled through a network and
examine how adding, removing, and moving single edges affects the ability of the network to
synchronize. We present algorithms which use methods based on node degrees and based on
spectral properties of the network Laplacian for choosing edges that most impact synchronization.
We show that rewiring based on the network Laplacian eigenvectors is more effective at enabling
synchronization than methods based on node degree for many standard network models. We find an
algebraic relationship between the eigenstructure before and after adding an edge and describe an
efficient algorithm for computing Laplacian eigenvalues and eigenvectors that uses the network or
its complement depending on which is more sparse. © 2008 American Institute of Physics.

[DOL: 10.1063/1.2975842]

Synchronization of coupled oscillators is a fundamental
dynamic process with wide application in natural and
technological systems.l_4 We consider generic oscillators
with diffusive-type coupling through a network and ex-
amine how the network structure affects synchronization.
Network structure measures have developed at a fast
pace in the last 10 years5 and many statistical measures of
network structure such as degree distribution, clustering
and degree associativity are commonly used when de-
scribing networks. But how does network structure relate
to synchronization? In this paper, we consider rewiring
networks as a local view of network structure’s impact on
synchronization. We model the synchronization of identi-
cal oscillators via a master stability function approach6'8
where the topology of the network, as measured by the
Laplacian matrix eigenvalues, is separated from consid-
eration of the dynamics of the oscillators, as measured by
the master stability function. This separation means that
a given network is more apt to allow synchronization re-
gardless of the type of oscillator. The synchronized solu-
tion is linearly stable if the network Laplacian spectrum
lies in an interval where the master stability function is
negative. Our goal in this paper is to examine how to
engineer a network to enhance synchronization. We de-
termine the impact on synchronization of rewiring (single
edge manipulations). This leads to strategies for choosing
edges that most enhance synchronization.

I. INTRODUCTION

Synchronization in networks of coupled oscillators is a
fundamental problem with applications in ecosystem
dynamics,9 communication using chaos,'® muscle tissue such
as the heart,1 and mitochondrial membrane potentials.11 In
addition, synchronization of neuron networks is critical to
understanding such wide ranging brain functions as long
range communication, effective modulation of motor neuron
input, and stabilization of response under variable levels of
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neurotransmitter.'> Some theories of neural information en-
coding rely on synchronization as the mechanism of encod-
ing stimulus and higher processing of that stimulus."? Many
studies have attempted to relate network structural properties
to synchronization. A common intuition is that networks with
small diameter or small average path length should be easier
to synchronize.6’14_16 But this intuition is not correct.'*'®!?
Careful analysis of the probability distribution of eigenvalues
in the limit of large networks shows that other relationships
do hold between statistical measures of network structure
and synchronization plropelrties.]g’19 Despite this, exceptional
cases exist for many statistical constraints.'” Even small
changes in network structure, such as adding or removing an
edgezof22 or changing edge Weights23 can affect the ability of
the network to synchronize in ways that are not fully under-
stood.

Attempts to design networks with specific dynamic
properties can be grouped by design constraints: constructing
networks with generative models,***° changing the edge
weights, coupling strength, or directionality,27’28 or by rewir-
ing an existing network through removal,22 addition, or mov-
ing of single edges, or swapping pairs of edges to maintain a
specific degree sequence.29 In this paper, we focus on the
effects of adding and removing edges and especially the
combination of both as single edge rewiring operations.

The network Laplacian arises naturally in the study of
coupled oscillators and the Laplacian spectrum plays a key
role in determining synchronization properties.z’6 Analyzing
the eigenvalues has provided insights into optimizing the
synchronization of remdom,25 evolving,30 and directed
weighted networks.”>"** The Laplacian eigenvector struc-
ture also provides information relevant to synchronization,
for example, by defining oscillation modes which become
unstable as a system is desynchronized when decreasing the
coupling strength33 or in determining methods for course
graining large systems.34 Partial synchronization occurs
when only some of the modes are unstable and those eigen-
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vectors describe spatial properties of the dynamics well be-
yond the stability boundary.33 Some oscillator systems lin-
earize to equations involving the adjacency matrix of a
network. In that setting the eigenvectors of the adjacency
matrix have been used to study the synchronization of net-
works when nodes or edges are removed.”” Here, we instead
focus on diffusively coupled systems which upon lineariza-
tion involve the Laplacian matrix. We exploit the eigenvec-
tors for the modes of the extremal eigenvalues to design
algorithms which optimally add or remove edges with the
goal of expanding the range of coupling strength for which
the synchronized solution is linearly stable. We point out that
these algorithms can also be inverted to inhibit synchroniza-
tion though we focus on enhancing it.

We start by considering a system of n identical oscilla-
tors symmetrically coupled through a network. The equations
of motion for the oscillator state vector x; at each node i are

@:F(Xi)—O'EL,‘/’H(-xj)’ (1)
dt =1

where F(x) determines the uncoupled oscillator dynamics of
each node, H(x) specifies the coupling of the vector fields,
and o is the coupling strength. The topology of the network
is specified through the coefficients L;; of the Laplacian ma-
trix. The diagonal elements L;; are the degree of node i. Off-
diagonal elements L;; take the value —1 if an edge exists
between node i and node j and 0 otherwise.”

Solutions of Eq. (1) are defined to be synchronized if
x;(t)=x;(¢) for all nodes i and j in the network. The system is
said to be synchronizable if a synchronized solution is lin-
early stable to nonuniform perturbations. To determine
whether the system is synchronizable we follow the ap-
proach in Ref. 6 and linearize Eq. (1) about the synchronized
solution x;(r)=s(z) for all i. The linearized equations can be
diagonalized into n blocks, indexed by i, of the form

D [74(5) + oMo @)
where Jp and Jy are the Jacobians of F and H, \; is an
eigenvalue of L, and y, represents the displacement from the
synchronized solution. The stability of the synchronized state
is determined by the largest Lyapunov exponent of the block
system given by the master stability function I'(o\) for Eq.
()58 1f I'(o\;) <0 for each i=2, the synchronized state is
linearly stable.*® For many oscillatory systems the master
equation is negative only in a single interval [ o, a,] deter-
mined by F, H, and s and not by the network topology. This
implies that the network is synchronizable only when the
ratio r=N, /M <ap/ a1,6 and that once the dynamics of the
individual oscillators are specified the synchronization prob-
lem reduces to studying the spectrum \; of the Laplacian.

For some special networks such as threshold networks,
the spectrum is known exactly and r can be computed
easily.24 Other networks such as those constructed using Car-
tesian product, join, and coalescence provide a way to com-
pute the spectrum during construction.”’ For networks where
the spectrum is not known exactly, bounds on the Laplacian
spec:'trumzwL41 give estimates on the eigenratio r. The maxi-
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mal eigenvalue A, is bounded between the largest degree k,
and the size of the network, k,+1 =<\, =<n, and the first non-
zero eigenvalue \,, often called the algebraic connectivity, or
spectral gap, is bounded above by the lowest degree in the
network \,<k; (if the network is not a complete graph).
Lower bounds on \, exist, such as 2[ 1 —cos(7/n)] and 4/nd,
where d is the diameter of the network, but they are not tight
bounds for most networks. Putting these bounds together for
the eigenratio r we find
2
n n-d } . 3)

2[1 =cos(m/n)]’ 4

k,+1

ky

s=rs< min{

If the spectrum cannot be accurately estimated or analyzed
using these techniques the eigenvalues must be computed.

The algebraic connectivity \, also appears in the study
of the topological structure of graphs. In that context \, is a
measure of how well connected a graph is; a graph with the
same node set and larger algebraic connectivity is considered
more connected. Rewiring graphs for larger algebraic con-
nectivity is directly related to the case we discuss below of
adding edges to reduce r and a performance analysis for
growing small graphs with a greedy heuristic is given in
Ref. 42.

Il. LAPLACIAN EIGENVECTORS

In addition to the eigenvalues, the eigenvectors v, are
useful and provide information about how the eigenvalues
change when edges are added and removed. Each eigenvec-
tor v, associates to node i a value vy ;. In the following we
show how to use these values to choose edges which most
impact synchronization.

Consider the Laplacian of a given network after adding
an edge Z=L+Le, where L, is the Laplacian for the network
consisting of a single edge. The characteristic polynomial is

det(L+L,-\)=0, (4)

which when transformed to the coordinate system given by
the eigenvectors of L yields

det(A + ATA=ND) =0, (3)

where A is the diagonal matrix of (sorted) eigenvalues of L
and A is the vector with elements A;=|v; ;—v;. jl» where edge
(i,j) is being added. The term ATA in Eq. (5) is an outer
product and thus has rank 1. Noting that the first coordinate

A, is zero for any edge, a general form for Lis

0 0 0 - 0
0 NM+AZ AN, ALA,

L=|0 AA, N+A3 AsA, . (6)
0o : :
0 AA, N, + A2

If only one eigenvector v, differs across the added edge,

then only one eigenvalue changes N=h+ A,% and all other
eigenvalues remain the same. If only two eigenvectors, say
v, and v, differ across the added edge, the two modified
eigenvalues are given by
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where Q,E)\,-+Ai2. If m eigenvectors differ across an added
edge, then we must solve for the eigenvalues of an mXm
matrix. This is potentially much faster than solving the origi-
nal n X n problem. Similar computations work for removing
an edge, where L, is subtracted instead of added.

lll. ANALYSIS OF EIGENVECTORS FOR ADDING
OR REMOVING EDGES

We now discuss strategies for selecting which edge to
add or remove. To reduce the eigenratio » we want to de-
crease \, (removing edges can never increase \,, Ref. 37).
By definition the largest Laplacian eigenvector, v,, satisfies

N, = E (0,i— vn,j)2 subject to 2 vi’i =1. (8)
i~j i

This suggests that we remove the edge (i,j) which maxi-
mizes |v,;—v, |. This choice of edge is optimal in the fol-
lowing perturbation sense. We can track changes in the ei-
genvalues upon removing an edge by analyzing L—sL, as a
weight s varies from O to 1. From Eq. (8) we see this pertur-
bation subtracts the term s*(v,;—v,;)* from the sum of
squares, and also changes the sum due to the normalization
constraint. Since, as s increases from 0, the change in \,, due
to normalization is zero (N, is maximal in these coordinate
variables when s=0), we obtain

d\

d(sg) == (Un,i - Un,j)z' (9)
The choice of edge with most disparate nodes in v,, is opti-
mal for infinitesimal edge removal. For full edge addition or
removal, this argument for optimality does not hold because
the normalization constraint can counteract the gains due to
the new term. But, these eigenvector based methods remain
an effective heuristic technique for selecting edges.

The same ideas work for the lowest nonzero eigenvalue
and associated eigenvector ()\2,1}2).42 There are two impacts
of adding or removing an edge. One is due to the addition or
removal of a term in the sum and the other is due to the
normalization constraint changing entries in v, and thus the
other terms in the sum. In the case of \,, we can add the edge
with most disparate nodes in v, and this choice is optimal for
infinitesimal edge addition.

In searching for edges most disparate in the eigenvector,
we do not need to examine every edge in the network. Rather
we can examine the values in v, and determine which two
nodes are most disparate (see Fig. 1). Often an edge exists
between them and can be removed. In our experience, this is
the case in the majority of networks considered. In some
circumstances though, those nodes are not connected with an
edge. We can construct such an example network starting
with a ring network for which v,, alternates sign at each node
around the ring. Symmetry ensures that any edge is as good
as another, but we can break the symmetry by connecting a
special node to its four closest nodes on the ring. If we em-
bellish the network in this way with two special nodes (not
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FIG. 1. (Color online) Choosing an edge to remove based on the eigenvec-
tor v, of the largest eigenvalue A\, for a small network. The node sizes and
colors are proportional to the value of v, ; at each node i. The edge (3,8),
shown by the dashed line, has the largest value of \vny,-—v,,’,-\ for all edges
(i,j) and is chosen to be removed. In this graph nodes 3 and 6 have the
highest degree (5) but disconnecting the edge between them is not the op-
timal choice. Upon removal of the edge (3,8) the resistance r decreases from
3.85 to 3.67. Similar treatment for adding edges leads to examination of the
eigenvector v,. Combining these two approaches allows us to move edges as
well thus keeping the overall number of edges fixed.

directly across from each other nor close enough to overlap
neighborhoods) those special nodes will be most disparate in
the eigenvector, yet they are not connected. In cases such as
this, we still do not need to consider each edge to find the
optimal one. It is more effective to sort nodes by eigenvector
value and consider pairing the high and low values in de-
creasing difference order until an edge exists.

Using spectral information to select edges with maximal
impact on synchronization has also been successfully used
for coupled oscillators in a directed network using the adja-
cency matrix and its spectrum. In Ref. 22 a quantity called
the dynamical importance is introduced to measure the
change in eigenvalue when removing an edge. This quantity
is estimated using a perturbation argument and is used to
propose a choice of edge which maximizes the dynamical
importance. The perturbation argument can be adapted to the
Laplacian matrix setting and leads to an edge removal strat-
egy that is equivalent to ours. One difference between strat-
egies for directed adjacency coupling and undirected Laplac-
ian coupling is that in the latter we can search for the most
disparate nodes in the eigenvector instead of searching all
edges for the edge with most dynamical importance. In ad-
dition our derivation allows us to study adding edges using
the eigenvector with the lowest nonzero eigenvalue and
moving edges by combining both adding and removing
edges.

IV. GREEDY ALGORITHMS FOR ADDING, REMOVING,
OR MOVING EDGES

We tested the effectiveness of spectral edge removal
strategies by implementing a greedy algorithm that repeat-
edly removes edges while re-evaluating the removal criteria
at each step. We compared this eigenvector approach with
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FIG. 2. (Color online) Three methods for choosing two nodes to disconnect:
the highest degree node and its highest degree neighbor (high-high); the
highest product of degrees connected by an edge (product); the nodes with
most disparate values in the eigenvector v, (eigenvector). Disconnecting the
two highest degree nodes is as effective in reducing r as the eigenvector
method for network models with a skew degree distribution (Barabdsi—
Albert, power-law configuration model). But over all models the eigenvector
method is the most effective.

two other edge selection strategies based on degree: discon-
necting the node with the highest degree from its highest
degree neighbor (“high-high”), and removing the edge with
the largest product of degrees for the nodes at each end
(“product”).21

For our tests we used four different network models:
Barabasi—Albert preferential attachment with m=30; con-
figuration model with a power-law degree distribution P(k)
~k72 Watts—Strogatz small world with k=20, p=0.1; and
Erd6s—-Rényi G(n,p) random graph with p=0.1. While we
varied the network density from 0.01 to 0.3 and number of
nodes from 20 to 2000 in our explorations, these variations
change the results quantitatively but not qualitatively, so here
we present one representative case except where noted oth-
erwise. For each model we used four realizations of n=500
nodes. The parameters in the network models were chosen to
produce networks with a density of approximately 0.1 (ex-
cept for power-law configuration model which has a density
of about 0.01). If the model produced a disconnected net-
work [e.g., configuration model and G(n,p)] we used the
largest connected component so in that case n=500. Since a
connected graph is required for synchronization, in all strat-
egies we do not permit removing an edge that would discon-
nect the graph.

Figure 2 shows that the eigenvector method performs the
best over our set of sample networks. We note here that for
all network models, random edge removal has no average
effect on r and thus we do not show those results. For the
Barabasi—Albert, Erd6s—Rényi, and configuration model net-
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FIG. 3. (Color online) Three methods for choosing two nodes to connect:
the highest and lowest degree nodes (high-low); the two lowest degree
nodes (low-low); the nodes with most disparate values in the eigenvector v,
(eigenvector). For adding edges the eigenvector algorithm is clearly most
effective except in the case of the Barabasi—Albert model. In that model the
eigenvector v, singles out a low degree node and lumps the other nodes
together. Thus a hub node with high degree and v, value close to most
disparate causes the effect of eigenvector normalization in Eq. (8) to domi-
nate the impact of connecting the hub to the singled out node. When the
normalization constraint dominates in this way the eigenvector strategy is
slightly less effective.

works, the “high-high” method and eigenvector method per-
form almost exactly the same indicating that high degree
nodes are associated with large eigenvalues. There is a no-
ticeable difference for the Watts—Strogatz model network,
where the node degrees are almost all the same, which shows
that the eigenvectors encode more information than just node
degree.

Another rewiring approach is to add targeted edges to
reduce r. Since adding edges always increases eigenvalues3 7
we strategically choose edges which impact )\2.42 Our eigen-
vector method examines v, and adds the edge (i,j) that
maximizes |v,;—v, | [subject to the edge (i,j) not already in
the network]. This approach is optimal in the same perturba-
tion sense discussed above. We compare this eigenvector
method with two degree oriented approaches: connecting the
lowest degree node to the second lowest degree node (“low-
low”) and connecting the highest degree node to the lowest
degree node (“high-low”).

Figure 3 shows that the eigenvector method performs
better than the node-degree methods over our sample set of
network models with one exception. For the Barabasi—Albert
(BA) model, the “high-low” method performs slightly better
even though it is not at all effective on the other sample
networks. We discuss why this might be below. The figure
also shows that adding edges which impact N\, is more effec-
tive in lowering r than removing edges which impact \,.
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FIG. 4. (Color online) Three methods for moving (adding and removing) an
edge. The first removes the edge between nodes most disparate in the eigen-
vector v, and adds an edge between nodes most disparate in v, (eigenvec-
tor). The other two methods remove the edge between the highest degree
node and its highest degree neighbor and then add either an edge between
the highest and lowest degree nodes (high-to-low) or an edge between the
two lowest degree nodes (degree). In comparing to other figures, 20 edges
moved is the same number of operations as 40 edges added (or removed).
For the combination of adding and removing an edge, the eigenvector strat-
egy performs the best except for the Barabasi—Albert model. In that case the
high-to-low method performs better because adding edges connecting low
degree nodes to hubs causes normalization constraints to dominate the
change in the spectrum as described in Fig. 3.

This is reasonable because the sum of the entire spectrum
decreases (increases) by 2 when an edge is deleted (added).
This fixed absolute change affects the lower N\, at a much
higher relative rate than \,,.

A third rewiring approach is to move an edge. For the
eigenvector method we combine the methods from the above
based on the eigenvectors v, (adding) and v,, (removing). In
Fig. 4 we compare this method with two heuristic methods
based on node degrees. The “degree” method uses the previ-
ous methods of connecting low degree nodes to low degree
neighbors and disconnecting high degree nodes from high
degree neighbors. The “high-to-low” method first discon-
nects the high degree nodes and then connects the lowest
degree node to the highest degree node. Our results show
that the eigenvector method again has the best performance
on our set of sample networks. As for adding edges, some
special networks allow degree based methods to perform
slightly better though they perform much worse on other
networks. We also find that moving edges are about as effec-
tive as adding edges for reducing r and is a useful strategy if
the total number of edges in the network should be kept
constant.

To understand why the “high-low” method performs bet-
ter than the eigenvector method for some networks, we con-
sider the two effects that adding an edge has on \, in Eq. (8):
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FIG. 5. (Color online) The affect of moving edges on resistance is shown
for Barabdsi—Albert model networks with a lower density. Here m=3 with a
density of 0.006 (instead of m=30 with a density of 0.1). Comparing the top
portion of Fig. 4 we see that reducing the density with heterogeneous net-
works allows the eigenvector method to again perform better than the
degree-based methods.

(1) the addition of a new term and (2) changes in the other
terms due to the normalization constraint. For infinitesimal
edge addition (s<<1) the sum increases exclusively due to
the new term being added. But as s— 1 to represent the
addition of the full edge, changes in the sum also occur due
to the normalization constraint. In some networks, e.g., for
the Barabdsi—Albert model, the eigenvector v, is lopsided
such that one low-degree node i has a large value v, ; of one
sign and the remaining nodes all have small values of v, of
the opposite sign. (The sum of the components is zero to be
orthogonal to the ever present constant eigenvector.) The ei-
genvector method connects node i to the node j with the
largest |v,;—v, | which is often a low-degree node “on the
other side” of a hub even though there exist high degree
nodes with values near v, ;. When node j has low degree it
does not appear in many of the terms in Eq. (8) and so
changes due to normalization are small. The ‘“high-low”
method, on the other hand, connects node i to a high degree
node which affects a large number of terms in Eq. (8). In this
case, the impact due to normalization constraints can make
up for the slightly less optimal choice of a new term to add.

In Fig. 5 we show that for a less dense version of the
Barabdsi—Albert model with m=3 the eigenvector method is
again significantly better than the “high-to-low” method. The
lower density means that even high degree nodes impact
fewer terms in Eq. (8) so that introducing a new term domi-
nates the changes due to normalization constraints. The ei-
genvector heuristic is based on introducing the largest pos-
sible new term so it does not perform as well when large
degree hubs take on near-extremal values in the eigenvector.
Thus in general, methods which take advantage of high de-
gree nodes may in special circumstances do better than the
eigenvector method when the effect of normalization con-
straints on the eigenvalue are greater than the cost of adding
a smaller new term to the sum. The only circumstances in
which we have seen this are for heterogeneous and yet rela-
tively dense networks.

Because moving edges leaves the number of edges the
same, we can continue to move edges until the process con-
verges. In Fig. 6 we show the resistance level over 1200 edge
moves using the eigenvector method for network types with
approximately the same number of nodes and edges. The
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FIG. 6. (Color online) The convergence of moving edges using the eigen-
vector method is shown for each network type by plotting 1200 edge moves.
It is apparent that convergence occurs and that the resulting resistance levels
differ by network type. Clearly the greedy strategy is effective at reducing r
for each network type but may not achieve a global minimum for r. The
power-law configuration model results are similar but not shown because of
their potentially misleading lower density. The graphs shown are based on
networks that have approximately the same density: 500 nodes and 12000
edges.

resistance levels appear to converge with resulting resistance
levels that differ by network type suggesting that the mini-
mum found depends on the network type. Said another way,
when considering networks with fixed number of nodes and
edges the resistance r has local minima which are not the
global minimum. In general, moving individual edges with
our “greedy” heuristic algorithm will often find a local mini-
mum which depends on the initial network structure.

V. COMPUTING EXTREMAL EIGENVALUES

We now turn to some comments about computing A, ,\,,
and the corresponding eigenvectors. For large networks,
finding these eigenvalues and eigenvectors can be computa-
tionally intensive. For the common case of large sparse ma-
trices, iterative techniques such as the power method and
related methods are effective.” For the special case of the
network Laplacian we can use the Laplacian of the comple-
ment network to provide further improvements. The comple-
ment of a network places an edge between two nodes pre-
cisely when there is not an edge in the original network. The
Laplacian of the complement network is related to the origi-
nal network by

LS=nl-1-L=(mI-D)-1+A, (10)

where n is the number of nodes in the network, / is the
identity matrix, D is the diagonal degree matrix, A is the
adjacency matrix, and 1 is the matrix of all ones. The eigen-
values of LE are A{=0, A\=n—\;, i=2,...,n and L€ and L
share the same set of eigenvectors.”’38

To see how Eq. (10) is used in computing \, and \,,,
suppose we have a sparse network. We use power iteration to
find N, through repeated (sparse matrix) multiplication of a
trial vector v by L. To find N\, we note that v, is also the
eigenvector of LE with the largest eigenvalue n—\, so we
could use power iteration with L€ to find \,. But, since LCis
not sparse, we can instead use Eq. (10) to keep the advantage
of sparse matrix multiplication. If we keep our second trial
vector w orthogonal to the constant vector by subtracting its
average value, we ensure that multiplying by 1 results in the
zero vector. Then the power method iterative step for the trial
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vector w is weg, =(mI-D+A)w, followed by subtraction of
its average. This allows the computation to remain sparse at
the small cost of ensuring orthogonality to the constant vec-
tor. In practice, shifting the vector elements to be orthogonal
to 1 is not needed at every iteration so further performance
tuning is possible. Since the matrices A and D are already
used in the power method iteration of L in computing \,,, we
see that N\, requires approximately the same computation as
finding \,,.

The convergence rate of the power method is determined
by the ratio of the magnitude of largest two eigenvalues
No_1/ N, [similarly for (n—N\3)/(n—\,)]. The practical useful-
ness of power iteration depends on this ratio which may be
one or close to one for some networks. In that case variants
of the Krylov subspace iterative methods may be more ef-
fective in finding the extreme eigenvalues.43 Taking advan-
tage of the complement network to ensure sparse matrix con-
sideration is still effective.

VI. CONCLUSIONS

In summary we have explored the impact of adding, re-
moving, and moving single edges on the synchronization of
coupled oscillator networks. We described how to compute
the relationship between the eigenstructure before and after
adding or removing an edge. The problem of finding the
eigenvalues in the rewired network requires solving an m
X m eigensystem where m is the number of eigenvectors in
the original network which differ across the edge to be added
or removed.

We compared various rewiring schemes designed to in-
crease the ability of a network to synchronize. We find that
while all strategic rewiring methods are much more effective
than random rewiring, schemes based on the Laplacian
eigenvectors of the network are usually more effective than
computationally cheaper schemes based on targeting the
nodes of largest and smallest degree. Though we have con-
sidered networks without edge weights, the same technique
can be applied to weighted networks.

For the methods we studied, adding edges selected to
impact N, always enhanced synchronization better than re-
moving edges selected to impact \,,. Moving edges has the
advantage of maintaining the number of edges in the network
but does not appear to be better at enhancing synchroniza-
tion.

For some problems in ecosystem dynamics9 and neuron
networks,'” the goal is to inhibit synchronization. In those
cases our strategies may be inverted. We remove edges se-
lected to impact N\, and/or add edges selected to impact \,,.
Eigenvector methods are still effective and removing edges
becomes better than adding because the relative impact of an
edge on \, is larger than the impact on \,,.
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